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Abstract 

Although it is commonly  invoked, the phenomenon of 
'creat ion of  new wave fields', which is responsible for 
some of the features visible on topographic  images, has 
never been really explained in theoretical terms. This is 
done here in the case of  a crystal deformed by a 
uniform strain gradient.  The appropria te  Green func- 
tion is expanded in reciprocal space as a wave packet  
of  non-plane waves,  each component  corresponding to 
a single value of  the deviation parameter  at the entrance 
surface. It is then shown that  each component  of  this 
wave packet  is made up of  four parts,  two of which can 
be identified as 'normal '  wave fields (i.e. those predicted 

0567-7394/83/030387-13501.50 

by the Eikonal  theory);  the two others are the so-called 
'created wave fields'; it is shown that  they correspond 
to interbranch scattering from one branch  of  the 
dispersion surface to the other and give rise to two 
extra beams. These created wave fields extract  a 
fraction e -2my1 out of  the normal  energy flow (I vl being 
inversely proport ional  to the strain gradient),  in full 
agreement  with previous computer  experiments.  

I. Introduction 

Unders tanding the so-called 'creat ion of  new wave 
fields' in highly distorted parts  of  a crystal  has been one 

© 1983 International Union of Crystallography 



388 DYNAMICAL X-RAY PROPAGATION 

of the major challenges of the dynamical theory of 
X-ray propagation, over the past 15 years. This 
phenomenon was first predicted on a theoretical basis 
by Penning (1966) in his thesis and was suggested by 
A. Authier in 1966 at the 15th Denver Conference on 
X-ray Analysis as an empirical explanation (Authier, 
1967) for some of the features of the topographic image 
of a single dislocation: according to Authier, when 
traveUing in a sufficiently distorted region, a given wave 
field (i.e. a set of two plane waves, represented by a 
single point Pi on the dispersion surface in reciprocal 
space) would give rise to two wave fields; one of them, 
the 'ordinary' wave field, being the expected con- 
tinuation of the initial wave field (with a tie-point lying 
on the same branch of the dispersion surface as Pi), 
while the other, the 'newly created wave field', would 
propagate in a quite different, unexpected direction and 
would correspond to a tie-point lying on the opposite 
branch of the dispersion surface (this is the reason why 
this phenomenon is sometimes called 'interbranch 
scattering'). 

The idea of interbranch scattering already lies 
implicitly in the lameUar models proposed for the study 
of the propagation of X-rays in deformed crystals 
(Authier, 1961; Kato, 1963a). In these models the 
boundary conditions are applied at the interface 
between neighbouring slices. 

Since then, this phenomenological statement has 
proved to be very useful as an empirical tool for the 
explanation of the observed images of certain types of 
defects (Authier, 1977). But no theoretical formulation 
of it has ever been given. 

Clearly this phenomenon which contradicts the usual 
ray theory occurs when the Eikonal approximation 
(Kato, 1964; Penning, 1966) becomes invalid. Its 
theoretical treatment requires that the dynamical 
theory be expanded beyond the limits of applicability of 
the Eikonal approximation. This is, at least in principle, 
achieved by Takagi's (1969) theory which establishes 
the partial differential equations (along with the 
boundary conditions) to which the amplitude of the 
crystal wave must obey. If one takes into account the 
actual experimental resolution, this theory is valid for 
any strength of the deformation. 

In contrast to the Eikonal theory, Takagi's treat- 
ment does not provide a direct analytical expression for 
the crystal wave. This latter is obtained as the 
convolution product of the amplitude distribution on 
the entrance surface (which depends on the form of the 
incident wave in vacuum) by the 'influence' or 'Green' 
function (which depends explicitly on the field of 
deformation in the bulk of the crystal). The math- 
ematical difficulties involved are such that the influence 
function has been calculated only in some few cases 
(Chukhovskii, 1974; Katagawa & Kato, 1974; 
Litzman & Janacek, 1974). Among these is the case of 
a crystal with a uniform strain gradient; the influence 

function is then some confluent hypergeometric 
function. Although this, in principle, solves the problem 
of the propagation of an X-ray wave in such a medium, 
and therefore should account for the appearance of a 
'recreated' wave field for large values of the strain 
gradient, all attempts to separate the 'ordinary' wave 
field from the 'recreated' one in the expression of the 
amplitude have failed up to now (Chukhovskii & 
Petrashen', 1977). 

The reason for this is clear: the Green function which 
represents the influence of a single point P0 (generally 
on the entrance surface) at another given point P 
(generally, on the exit surface) operates in direct space 
(or r space), while the concept of wave field belongs to 
a representation of the wave in reciprocal (or K) space. 
A wave field is, by definition, a (single) point in 
reciprocal space. No wonder, then, that the Green 
function which is a function of r~, at P and r~, ° at P0 does 
not provide a simple connection between the wave 
fields at the entrance surface and those at the exit 
surface. Clearly, this connection can be achieved only 
through an expansion of the Green function in 
reciprocal space. 

The three following examples show that the Green 
function has to be expanded in reciprocal space in 
order to obtain information on the wave-field structure 
of the crystal wave. 

(1) In the case of a perfect crystal, it is well known 
that the Green function is a Bessel function of zeroth 
order Jo(X), where X denotes some combination of the 
coordinates (both those of the point source P0 and 
those of the point P where the field is to be calculated). 
Convoluting the amplitude distribution corresponding 
to an incident plane wave by this J0, one would obtain 
the amplitude at P in the form of a sine function. 
Writing then this sine as a sum of two imaginary 
exponentials, one retrieves the usual wave fields 1 and 2 
of the Ewald-Laue theory (Balibar, 1969a), as expec- 
ted. But though the mathematical manipulation in- 
volved here [writing sin x as (e tx - e-~X)/2i] is of the 
most trivial type, one still lacks physical reasons for 
doing so. Even in that case, the two wave fields come 
out of the Green function in a rather artificial manner. 

(2) It would seem then, that separating the Green 
function itself into two parts would make the structure 
in wave fields appear more naturally. Since Jo(X) = 
1[ Hlt,.~ 7 0~zJ + H~(X)] (where H~ and H~ are two Hankel 
functions), the expression for the amplitude at P is, 
for any shape of the incident wave, made up of 
two parts: one which is obtained through convolution 
of the incident amplitude distribution by H~ and the 
other which involves Ho 2. Having shown that these two 
parts correspond, respectively, to a weakly absorbed 
mode, and a strongly absorbed mode, one of us 
(Balibar, 1968, 1969b, 1970) has proposed a descrip- 
tion of the crystal wave in terms of 'generalized wave 
fields'. Apart from the fact that it relies on a 
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mathematical formula [Jo = ~(HdI 1 + H2)] without any 
real physical meaning, this model does not provide any 
understanding of how the structure in K space of the 
crystal wave is related to that of the incident wave. 

(3) Our last example is the work by Chukhovskii & 
Petrashen' (1977) where the procedure used in example 
(2) is extended to the case of a crystal with a uniform 
strain gradient. Having explicitly calculated the func- 
tion which replaces Jo in that case, these authors were 
able to represent it as a sum of two functions (the 
equivalent of the previous Hankel functions H0 ~ and 
//2). But this separation, obtained by means of a 
general mathematical formula, still does not provide 
any understanding of how the K structure of the 
incident wave is transformed in the crystal. Nor does it 
show any 'creation of new wave fields' for sufficiently 
large values of the strain gradient. 

In this paper we show that by a proper expansion of 
the Green function in reciprocal space (or K vectors 
space) the problem of how one wavefield can 
(for large values of the deformation) give two wave 
fields (i.e. two points in reciprocal space) can be solved. 
This treatment, which is performed for the case of a 
uniform strain gradient, could give some hints on how 
to deal with a more general type of deformation. 

II. Expansion of  the Green function as a wave packet 
(for a constant strain gradient) 

Because of its (relative) simplicity, the case of a crystal 
with a uniform strain gradient has been extensively 
studied. Kato (1964) and Penning & Polder (1961) 

who have treated it on the basis of the Eikonal 
approximation (i.e. small strain gradient), have shown 
that the energy trajectories for the two wave fields 
induced by an incident plane wave are portions of 
hyperbolae, the characteristics of which depend on the 
values of the deformation and on the departure of the 
incident wave from Bragg's angle at the entrance 
surface. The general treatment, on the basis of Takagi's 
equations, has been performed by C hukhovskii (1974), 
Katagawa & Kato (1974), and Litzman & Janacek 
(1974) who all have given the exact analytical form of 
the influence function. 

For reasons of simplicity, and after Chukhovskii & 
Petrashen' (1977), let us assume a transmission 
symmetric case and a constant strain gradient such 
that: 

h. u = 4Bs o s h 

1 t92 
B -  - -  (h.u), (1) 

4 cos o tgs h 

where h = reciprocal-lattice vector (= 2rt times the usual 
reciprocal-lattice vector = 2nhKato), u = atomic 
displacement, and s o and s h are reduced coordinates in 
the transmitted and reflected directions (see Table 1 
and Fig. 1). 

The Green function for the reflected (h) wave is (see 
Chukhovskii & Petrashen', 1977): 

Gh(eo,P)-- Gh[r(Po), r(P)] 

= [O(¢h)-- O(-¢o)]lFl[-V,1;-giB~o~h].  (2) 

r(Po) and r(P) are, respectively, the position vectors of 

Table 1. Comparison o f  the system of  coordinates and deformation parameter used by different authors 
(symmetric case) 

K a t o  P e n n i n g  & P o l d e r  C h u k h o v s k i i  a n d  this  p a p e r  

1 1 2zt 
[hi/2 sin/7 

Coorclinate system x .  0 0 - x x .  

~ [ S o ] ,  ~ Is01, 

0 

~[So], 
Coordinates along 

K o and K h [so], [s hI [so], [Sh], 

Reduced coordinates 

7~ 

So = ~ Is01 cos 0 

~r 
sh = -~- [sj, l cos 0 

Strain gradient fix tip = - f i x  
A 

Parameter I r/I at depth z r/(z) = r/(0) + pK z r/(z) = r/(0) -- p..z 
2Bn 

rt(z) = rt(0) + z 
A 
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0 Fc%~ Po . . . .  z=O 

P 'z  

Fig. 1. Geometrical parameters in the case of a unit point source 
located at P0 on the entrance surface. One calculates the wave 
Gh(Po, P ) induced by such a source at P(~, ~h) in the crystal. 

The Green function (2) can be expanded in 
reciprocal space by means of the Laplace transform, 
according to the following procedure. This is carried 
out here only on the term 

O(~h) 1F,(--V, 1 ; --4iB% ~h) 

since the calculation relative to 

--0(--~o ) 1Fl(--V; 1; - 4 i B ~  o ~h) 

would be quite similar. 
As a function of ~h (Go being considered as a 

parameter), 

O(~h) IFI(--v,1;-4iB~o ~h) 

a current point P0 on the entrance surface and of the 
point P on the exit surface where the amplitude of the h 
wave is to be calculated (Fig. 1). O is the usual step 
function. 

~h = Sh(P) -- sh(Po); 

Go = so(P) -- so(P0); 

i 
v - ; ( 3 )  

4B 

1F1 is the confluent hypergeometric function. 

is expanded as (see Higher Transcental Functions, 
1953): 

O ( ¢ )  , F I ( - - V ,  1; - - 4 / B %  • )  

Po + iw 

-- 2~i p - ~ - l ( p  + 4iB~o), ep~, dp, 
Po - iQo 

(4) 

where p and ~h are conjugate variables relative to the 
Laplace transform. 

Expressing in turn (p  + 4iB~o) ~ in terms of its 
inverse Laplace transform, one obtains: 

oo 

1 f e -4m~°t 0 ( ~ )  lFl ( -v ,1 ;  - 4 i B ~  o ~h) = - ~  
0 

t--P--1 

r(-v) 

po+i~ ~" t-~-I (~h-- t) v 
dt f ep,~,-,, p-.-, dp = f e - n ~ , - -  r(-v) r (1  + v) 

Po - ivo 0 

- -  dt 

~̂  ( ~ h _ t ) .  
= exp[--2iB(~ + ~n) 2 + 2iB~2o] f e 4m(~°+~D(~n-t) F(1 + v) 

0 

t--P--1 
e -2/B(t,-t)2 - -  e 2/nt~ dt. (5) 

r(-v) 

A second Laplace transform performed on this convolution product then leads (after some straightforward 
manipulation) to: 

O ( ~ h )  , F l ( - - V ,  l ;  - - 4 i B  ~ o ~h)  = - -  
1 e_i,~/2(_ i )  1/2 

2zr/ ~ exp[ iB(~ - ~]' -- 2~° ~h)] 

Po + i ~  

P o - i m  

i 1/2 i ]i/2 ~h)}] dp, 

where D,(z) is the parabolic cylinder function of order v. 
A similar calculation would show that: 

(6) 

0(--%) f , ( - v , 1 ;  -4iB£.o ~h) = 
2zd 

exp[iB(~0 2 - ~ - 2?.0 %)] 

Po + lvo 

f 
Po - loo 

exp (~h - ?-.o)1 'D-., 1 --4-ff p D 
] 

{ p - 4 i B ( ~  o + ~h)}]dP, (7) 
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so that finally the Green function (2) is: 

Po + t ~  

ch(~0,~) = f 
Po -- ioo 

Ph(P) dp, (8) 

where 

1 
= - - - e - i , ~ , / Z v  '/2 exp[iB(~02 - ~j~- 2~0 ~h)] Ph(P) 2re 

x exp[ p (~h--Go)] [D~(-iYo)D_v_I(-Y) 

- D _ o _ l ( - r o )  O . ( - i Y ) ] .  (9) 
The parameters Y0 and Y introduced in (9) are such 
that 

(--4-ff)l/2p=vl/2p=--iYo 

[P - 4iB(~0 + ~h)l = v 'n 

(10) 

4iBzcz) 
. . . .  iY  

(11) 

so that 

7~ 
Y =  Yo + 4vl/2B ~ z. (12) 

A 

This should be compared to the well known formula 
relating the value of the deviation parameter r/ at a 
depth z to its value r/0 at the entrance surface: 

2Bn 
r/= r/o + - - z .  (13) 

A 

Let us recall that, in a symmetrical case, r/ = 
A0sin 20/(Czv/~nZ~), where AO is the departure from 
Bragg angle, Zh and X~ are the h and h Fourier 
coefficients of the electrical susceptibility and C is the 
polarization factor. Comparing (10), (12) and (13) 
leads to 

with 

P = -iv-l~2 Y0 = -2it/0 (14) 

r(z) = 2 v  1/21/(z). ( 1 5 )  

Equation (14) shows that the variable of integration in 
(8) is directly proportional to the deviation parameter 
r/0 at the entrance surface. The interpretation of Ph(P) 
then becomes clear: if one expands the spherical wave 
(which on the vacuum side of the entrance surface 
represents a unit point source at P0) as a sum of plane 
waves (each being characterized by a single value ofp  
or, alternatively, r/0, then Ph(P) is the wave induced in 
the crystal at a point P(~o,~h) by the component p of 
this expansion In other words: each of the vacuum 
plane-wave components is transformed, through the 

crystal, in Ph(P). Integrating Ph(P) over all values ofp  
then gives the field at P due to a unit point source at 
P0(0,0); in other words, the Green function Gh(~O,~h). 

III. Analytic expression of each component Ph(P) as a 
function of the deviation parameter 

Since we are interested here in the phenomenon of 
'creation' of 'new' wave fields, the analytic form of 
Ph(P) will be calculated assuming a situation for which 
this phenomenon is expected. According to an argu- 
ment first stated by Penning & Polder (1961), this 
'creation' is most likely to occur at a depth z = z 0 such 
that r/(Zo) = 0, since the curvature of the ray trajectory 
is then at its maximum. This conjecture has been amply 
verified by a computer experiment performed on the 
basis of Takagi's equations (Balibar, Epelboin & 
Malgrange, 1975). In this same computer experiment, 
the value of IBI for which 'creation' becomes notice- 
able has been estimated: 4 IBI must be of the order of 3 
so that 10% of the total intensity be diverted in the 
'created' wave fields. This result is in agreement with 
the criterion previously given by Balibar (1970) on a 
theoretical basis: creation of new wave fields is 
expected for 41BI >> 1. We shall, therefore, from now 
on, assume: 

(1) IBI >> 1 and, for instance, B > 0. (A positive 
value of B corresponds to the geometry of Fig. 2.) 

(2) The plane z = z 0 [such that r/(zo) = 0] lies inside 
the crystal (see Fig. 2). For a positive value of B, this 
imposes a large and negative value for r/0 = r/(0). A 
priori, we expect that for z < z 0 the crystal wave will be 
of the 'normal' type (i.e. only two wave fields) while for 
z > z 0 it will exhibit two extra terms. 

The assumed conditions and their implications 
regarding the various parameters involved are 

B>O 

~o 

[ 
, 

q(o)<0 

q (Zo)=O 

q(z)>o 

Fig. 2. Geomet ry  of  the crystal deformation in the case B > 0. 
Creation o f  a new wave field is expected to occur  in the region 
z _~ z 0 where the curvature of  the ray trajectory is a maximum 
[rl(z0) = 01. 
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summarized below: 

(1) B large and >0 => I vl = ~ 1 v = I vl el'a2; 

(16) 

(17) (2) r/o = r/(0) large and <0 => Y0 = I]101 e5i'~/4; 

B 
(3) r/(z) --- r/(0) + 2 z t - -  z large and >0 (z > Zo) 

A 
=> Y = I Y I e i'~/4. ( 1 8 )  

Under these conditions Ph(P) at a given point (6,~h) 
is (see Table 2): 

P h ( P ) = e x p [ i B ( ' 2 o - ' ~ , - 2 6  'h)] exP[2 ( ' h - 6 ) ]  

{ 1 (_~_) ~ I ~ ( y ~ _ y 2 ) ]  
x v U 2 ~  --yeXp[l 2 

e 2 i , ~ v v l l 2 L ( Z I  v 1_ 

2rt\  Yo] Yo exp[¼(Y2- 
I102)1 

1 
__ ei ,~/4  e - 3 i , ~ v / 2 ( 1  _ e2*'~)m ~-~ ( YYo) ~ 

x exp[¼(Y = + Iio2)1 

1 
__ e - i , , / 4  e 3 i , n , , 2 ( 1  _ e 2 i , ~ o ) l / 2  v ~  ( Yro)-O- ' 

2r~ 

e i / 4 o  ro  12 - ~ Y I 2 )  e -n~  vl 

(20a) 

) 
x exp[--¼(Y 2 + Yo2)]j. (19) 

As conjectured, Ph(P) is a sum of four terms, A, B, C, 
D: 

1 
A = - -  exp[ i B ( ~  - ~ - 2 6  ~h)] 

2zt 

e p/2(g*-~o)lvll/2 Yo ~ 1 X 
Y IYI 

Table 2. Asymptotic expansion o f  the parabolic 
cylinder functions D,. f o r  large values o f  the argument u 

Parabol ic  cyl inder functions D ,  

D . ( u )  = u ~' e - ~ ' '  - - -  u -  ~- z e ~ , ,  q.(u). 
V ( - v )  

where e . ( u )  depends on the argument  )C of  u. 

3~z 3~z 
- - - < Z <  e ( u ) = 0  

4 --4- " 

rc 5re 
- < X < e ( u )  = e ~ "  
4 4 " 

57r rt 
--  - -  < X. < --  - c, (U) = e -in~ 

4 4 

1 
B = - -  exp[ iB(~ - {~, - 2 6 {h)] 

2rt 

X e P / 2 ( t h - ~ o ) l  1)l 1 / 2 . t ' Z  It, 1 
tro tYot 

C _  

e i /4 ( i  YI 2 -- I Yo 12 ) e-hi vl 

(20b) 

1 
- - - -  exp[ iB(~ -- ~, - 2 6 djh)] e p/2(~-~°) 

2~r 

X ein/4(I YI I Yol) v e u4°rl2+lr°t2) (1 -- e-2'rt~l) 1/2 

(20c) 

1 
D = - -  e x p [ i B ( ~ -  dff,-- 2 6  ~h)] 

2~ 

X e p/2(~'-~°) e-i'~/41vl(I YI I gol) -v-1 

x e -u4ov~2+~ro~2) (1 - e-2 ' t tvt)  1/2. (20d) 

Correlatively, Gh(Po,P) is a sum of four integrals. 
Note that this conclusion holds only under the 

conditions [see (17)-(18)] that Y and Y0 be of opposite 
signs. It can be easily shown that if Y and Y0 were of 
the same sign, i.e. if the conditions r/(z) = 0 were not 
fulfilled inside the crystal, then Ph(P) in (19) would 
reduce to only two terms - as expected. 

IV. Phys ica l  interpretation - 'creation' o f  new waves  

At this stage one would like to follow Kato's procedure 
and obtain the physical interpretation of the four terms 
involved in (20) by means of the stationary-phase 
method (Kato, 1961). 

Let us call tpa, tpB, tpc and ~PD the phases in (20a), 
(20b), (20c) and (20d), respectively, They can be 
written, using (10) and (11), as: 

tPA = --2iB~ 2 -- 4 i B 6  6 + P 6  

¢pn = 2iB ~ -- p 6 

ip 2 
~o c = 2 i B ~  - P 6  -- 

8B 

i 
~o D = - 2 i B ~ ,  - 4iB 6 6 + P 6  + - ~  p2. (21) 

Unfortunately, it turns out that integration by the 
stationary-phase method can be performed only on ~0c 
and ~0 n since the phases ~0 A and ~0 n cannot be made 
stationary owing to their linearity in p. We shall 
therefore use the stationary-phase method for C and D 
only and another method for A and B. 

A. The normal part  o f  Gh(P o,P) 

The phases tpc and tpn are stationary for 

P~I] = 4 i B 6  and P~21-- 4/B~h, (22) 

respectively. 
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The corresponding values of r/0 are: 

~ ( 1 l  - -  -2B?0 and r/o[2]* = - 2 B ~  h. (23) 

Comparison with (A.1.3) and (A.1.4) in Appendix 1 
shows that these values of r/o are precisely those which 
would characterize the two hyperbolic trajectories 
which, according to the Eikonal theory, link P0(0,0) to 
P(?0,~h) in the limit B >> 1 and Ir/ol and Ir/pl >> 1. 

In other words: in the case B >> 1, the 'normal' part 
of Gh(Po,P) is zero everywhere except along the 
trajectories (see Fig. 10) along which energy is 
normally transferred in the case B ,~ 1. This is, of 
course, the reason why we call this part of Gh(Po,P) the 
'normal' one. 

B. The 'non-normal'part Of Gh(Po,P ) 

We call 'non-normal' what is left once the 'normal' 
part has been taken into account: 

Po + 1oo 

P o -  l m  

and 
Po + lvo 

f 
P o -  too 

exp[/B(~ - ~, - 2? 0 70)1 e p/2tt'-t°) 

1~1/2 ( ~ ) v  1 
2n --~ exP[¼(Yo 2 -  Y2)]dp (24a) 

exp[iB(?0 2 - ~ - 2?0-0 ~h)] eP/2(th-~°) e 2i'~ 

1)1/2 [ \ v 1 
x ~ t'~-" J exp[l( Y 2 -  Y~o)] dp (24b) 

2zc "~o 

or, alternatively (upon replacement of Yo and Y by their 
expression as functions of p): 

1 
- -  exp(-2iB~, - 4iB?0 ~h) 
2n 

Po + ioo 

x _} p~[p - 4iB(?0 + ~h)] -~-I e pt~ dp (25a) 
Po - loo 

and 

1 
- -  exp (2iB?d) e 2t,~, 
2n 

Po + too 

f p-~- l[p_ 4iB(?0 + ~h)] v e -p~o dp. (25b) 
Po - lvo 

As already mentioned, integration by the stationary- 
phase method is not possible. Nevertheless, (25a) and 
(25b) can be calculated directly using the properties of 
the Laplace transform (see Higher Transcendental 
Functions, 1953), which gives for (25a) 

iexp(2iB~2),F,[-v,1;-4iB(?0 + ?0)~h] 0(?0) (26a) 

and for (25b) 

--i e 21'~v exp (2iB~ 2) 1F1[--v,1; -4iB(?0 + ?0) ?0] O(?0). 

(26b) 

The same iF1 function as in Gh(Po,P ) appears [see 
equation (2)] except that the argument 70 ~h has to be 
replaced either by (?0 + ?0) 70 in (26a) or (?0 + ~h) ?0 in 
(26b). Expression (26a), for instance, is then cal- 
culated following the procedure which led from (4) to 
(8) and (9), 70 being replaced by (?0 + ~h) and ~h 
unchanged. One then obtains for the integrand, in the 
limit v --, 0 and I Yo I and I YI >> 1, a sum of four terms 
analogous to (20a)-(20d). It will be shown in the 
following section that, among these four terms, (20c) is 
predominant. Since the phase of this major term varies 
quadratically with p, it can be integrated using the 
stationary-phase method. The stationary condition is 
similar to (22) and (23) except that ?0 has to be 
replaced by (?0 + ~h); this gives 

Pi,*l = 4/B(70 + ~n) or r/~[* l =-2B(70  + ~h)" (27) 

The corresponding optical path (Fig. 3) is a broken 
line made of two straight segments, similar to that of 
the normal [1] wave field except that the turning point 
is now defined by P o S ( q  = (AI~z cos  8)(?0 + ~h) SO that 
SIll coincides with A, the limit of the Borrmann fan on 
the exit surface. We therefore come to the conclusion 
that the 'non-normal' part (26a) of Gh(Po,P ) is zero 
everywhere except along So. A similar procedure would 
show that the 'non-normal' part (26b) of Gh(Po,P) is 

Po(O,O) 

~--~A / ~  (111~0'°1 

/ \ 
B,,, !,,,F t~.,~,) ,/A 

/ 

",, I/ 
\ / 

"',,,// 
'1 P~'] ( I~o * gh,l~h) 

Fig. 3. Energy distribution in the crystal due to a unit point source 
P0. A fraction of the energy is normally transferred to every 
point P of the exit surface along the two normal trajectories 
PoStl]P and PoS[2jP. The rest propagates 'non-normally', i.e. 
for each P, it propagates as if it were going to be normally 
transferred to two virtual points PiLl and PI2j lying outside the 
crystal. As a consequence, the non-normally transmitted part of 
the energy emitted by P0 propagates in the crystal, parallel to s o 

and s h, along the two edges of the Borrmann fan. 
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zero everywhere except along s h. For this second extra 
wave: 

PI:*J = 4iB(~o + ~l,) or r/~)~* l = - 2 B ( ~  o + ~,). (28) 

V. Energy flow of an incident pseudo plane wave. 
lnterbranch scattering 

Let us now consider an incident pseudo plane wave, i.e. 
a plane wave of finite lateral expansion (see Appendix 
1). Let r/o be its characteristic deviation parameter at 
the entrance surface. Gh(Po,P ) has been expressed in 
(8) as an integral over p or alternatively over r/0 as p = 
-2it/0; therefore the integrand in (8), Ph(P) = 
Ph(-2ir/0), can be considered as representing the wave 
which is induced in the crystal by the considered 
pseudo plane wave. This conjecture is confirmed by the 
fact that the phases of the normal parts of P~(p) are 
identical to the Eikonal calculated in Appendix 1 
[compare ~0 c and ~0 D in (21) with (A. 1.12)]. 

Let us now study in more detail the four terms A, B, 
C and D involved in Ph(P) = A + B + C + D [equation 
(20)]. 

A. Energy trajectories 

In the previous section we have shown how the 
energy of a unit point source (i.e. an incident spherical 
wave) is distributed inside the crystal. These results are 
pictured on the left side of Fig. 4 where 4(c) 

P 

(a) . =o  (b) 

: [ ]  ' I ' 

,1 i 

P t,~.l - - [ 2 1  

(c) 'c,~ % (d) 

sh P s'M 
(e) 

B~O and<< 1 

t ~ t /  k-tq,-[z] 
s>> , (f) 

Fig. 4. Wave propagation in a crystal, assuming: left: an incident 
spherical wave (a,c,e); right: an incident pseudo plane wave 
(b,d,f). (a),(b) A perfect crystal B = 0. (c),(d) A slightly distorted 
crystal IBI :/: 0 and IBI ~ 1. (e),(f) A highly distorted crystal 
IBI ~>i. 

corresponds to IBI ,~ 1 and 4(e)to IBI ~ 1. The main 
difference between 4(e) and 4(c) is that in the case 
IBI >> 1 new energy flow trajectories appear on the 
edges of the Borrmann fan and only there (§ IV). From 
this, one can infer the energy flow inside the crystal for 
an incident pseudo plane wave in the case IBI >> 1 (Fig. 
4 f )  from the case I BI ~ 1 (Fig. 4d). The conclusion is 
that an incident pseudo plane wave induces four wave 
fields inside the crystal; two of these are 'normal', and 
the other two are the so-called 'recreated wave fields'. 

B. Intensity splitting 

The intensities of these four wave fields are obtained 
by squaring the amplitudes A, B, C and D in (20). 

In the limit I vl ~ 0 this gives: 

1 
l A ~ 1 x e -2~tlvl X 

I 

18 ~ 4r/o ~ x e -2~'~' x I 

I c _ l  × ( 1 - e  -2'~'~')x 1 

1 1 
I o ~-- 4r/° 2 x (1 - e -2'~'v') x - - .  (29) 

4r/2 

The intensities have been written in this peculiar form 
on purpose, in order to evidence three successive 
splittings of the intensity during propagation: 

(a) Remembering (see Appendix 2) that at the 
entrance surface the incident beam (of intensity 
normalized to 1) corresponding to a pseudo plane wave 
of deviation parameter r/0 is split into two wave fields, 
of respective intensities 1/4r/02 and 1 - (1/4r/02) ~ 1 (as 
I r/ol is large), we can interpret the first factor in each of 
the four intensities (29) as representing the splitting of 
the incident intensity between the two wave fields at the 
entrance surface. I A and I c thus pertain to the same 
wave field (wave field [1] if B > 0) while I s and I D 
should be associated with the other. 

(b) These wave fields propagate normally (i.e. 
according to hyperbolic trajectories which in the case 
IBI >> 1 reduce to broken lines) up to a region at a 
depth z 0 such that r/(z0) ,~ 0, where, as already shown 
creation of new wave fields occurs. The second factor 
in the intensities (29) indicates how the intensity of a 
given wave field is then shared between the normal and 
the created wave fields. For instance, the wave field 
which propagates with an intensity 1/4r/o 2 in the region 
z < z 0 (see 18 and lo) is split in the region z -~ z 0 into 
two parts of relative intensities e -2 '~  (extra wave field) 
and (1 -- e -2' ' 'J) (normal wave field). 

(c) The third factor in each term of (29) represents the 
splitting of the intensity at the exit surface for each of 
the four wave fields which propagate in the region 
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z > z o. r/, the deviation parameter  at the exit surface, is 
the same for all four wave fields which means  that  
equat ion (13) holds for new wave fields as well. This 
discussion is summarized in Fig. 5. 

C. Interbranch scattering 

The question now is: 'Do  the extra wave fields 
correspond to in terbranch scattering?'  ( interbranch 
meaning a ' jump'  of  the tie-point from one branch  to 
the other in the process of  the creation of  a new wave 
field at z ~_ Zo). 

This question can be answered by considerat ion 
of  the phases involved in (20). Except for a factor  
B(~ 2 - ~ - 2~0~a) - r/(~h - ~0) these phases are: 

1 
- ( , l o  - , f )  

41BI 

1 
- ( , f  - 

41BI 

= + 

41BI 

1 
~Oo = ~ (-r/o 2 - r/2). (30) 

e -21(Ivl s~ 

11,~targe <o ) 11.o tl;(large>o) sh recreation zoRe 
z=o z=zo 

Fig. 5. Propagation of a pseudo plane wave inside a crystal 
distorted by a constant strain gradient IBI >> 1 (here: B > 0). r/0, 
the value of the deviation parameter at the entrance surface, is 
large and negative, r/then varies monotonically with the depth z 
inside the crystal. At z = z 0, r/ reaches the value r/ -- 0, the 
curvature of the wave field is the maximum and new wave fields 
are 'created'; each new wave field takes a fraction e -2nlvi of the 
intensity of the wave from which it is 'created'. The splitting 
of the intensity among the two wave fields at the entrance 
surface, and among the refracted and reflected wave at the exit 
surface, is in agreement with the results of the ordinary 
dynamical theory (as long as one considers that the variations of 
r/follows the same laws as in a slightly distorted crystal). 

As can be seen from (A. 1.12) in Appendix 1, a + sign 
in front of  r/2 (respectively r/2) corresponds to a wave 
field of  type [ 1 ] while a - sign is characterist ic of  a type 
[2] wave field. 

Therefore,  the tie-points of  'normal  wave fields' [C 
and D in (20)] stay on the same branch of  the 
dispersion surface (see in Fig. 6 the black arrows going 
from M to R for wave field [1], for example, which 
corresponds to the C term). The 'extra wave fields' [A 
and B in (20)] exhibit a mixed dependence (r/02/4 IB I) - 
(r/E/41BI) or (--r/02/41BI) + (rlE/41BI). The A term 
corresponds to a tie-point on branch  [1] (+r/2/41BI), 
which upon arrival at region z _~ z0, jumps  to branch  
[2] (-r /2/41BI) - see black arrows from M to N 
followed by white arrows from P to Q after the jump 
from N to P. This term is responsible for the 
in terbranch scattering from branch [1] to branch  [2]. 
Similarly the B term takes into account  in terbranch 
scattering from branch  [2] to branch [1]. 

This argument  can be stated more precisely by 
comparing the phase ~0 A (or q~B) with the Eikonal  along 
the corresponding t ra jectory of  mixed [ 1 ] and [2] type. 

Let us consider,  as in Fig. 7, a wave field of  type [1] 
which, after the turning point St11 where r / - -  0, splits 
into a normal  wave field ( trajectory S[11 P)  and a newly 

o ~ ~ ~. ~o o 
['] i : M i 

!R i 
Zo- - -  'It I[ 

.I/ 
Fig. 6. Interbranch scattering (only one wave field, here Ill, has 

been pictured for clarity). At a depth z ~_ z 0, the wave field which 
from z = 0 to z 0 propagates as a type [1] wave field (black 
arrows from M to N), splits into two waves, one of type [1] 
(black arrows from N to R) and one of type [2] (white arrows 
from P to Q). 

qo 

2nBz i ne='lo+ --~-- - 
P(l~o,~h) P'(~o,-~h,O) 

Fig. 7. Schematic drawing showing the ray paths corresponding to 
interbranch scattering. A normal wave field (here of type [1]) 
follows PoS[ll and then splits into two wave fields: a normal one 
propagating along StqP and a new one (here of type [2]) 
propagating along Stq P'. 
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created wave field (trajectory StljP'). The phase 
change along P0 Stlj P '  is, from (20), 

~Pa = B(~  2 -  ¢/2_ 2~ e l , ) -  ,7o(¢~,- ~ )  

,7o 2 ,72 
+ - -  - - ,  (31) 

41BI 41BI 

where ~ and el, are the coordinates of P ' ,  i.e. 

(32) 
¢;,=0 

if ~o and ¢~ are the coordinates of P. B is assumed to be 
positive. 

Let us check that (31), along with (32), is identical 
to the Eikonal which would correspond to a wave field 
of type [1] from P0 to St11 and then a wave field of type 
[2] from St11 to P' .  The Eikonal tp~ along P0 Stll and ~P2 
along S[llP' can be calculated from (A.l.12) which 
gives the phase tpj along a wave field j propagating 
from P0(0,0) to P(¢0, Ch). Then 

,70 
(Pl = n~0  ÷ ,70 ~ ÷ - - ,  (33) 

4B 

as ,7 = 0, ~(Stt l) = ¢o, Ch(Sttl) = 0. tp 2 along Stq P '  is 
equal to the phase along a wave field 2 going from P0 to 
F:  

? 
tp2 = B ~ - - -  (34) 

4B 

as ,70 = 0, ~(F)  = ~h, Ch(F) = 0. Adding (33) and (34) 
gives (31) once ~ and el, have been replaced by their 
values (32) and (A. 1.3) used. 

D. The scattering factor; comparison with previous 
computer experiments 

As has been stated in § V B, when creation occurs, 
the new wave field takes a fraction e -2"t'~ out of the 
initial intensity, leaving a fraction (1 - e - 2 ~ )  in the 
beam which keeps going normally. We call this factor 
e -2'~'~ the scattering factor since the phenomenon here 
is quite analogous to a scattering process. 

This quantity is of importance and it can be related 
to computer experiments performed by Balibar, Epel- 
boin & Malgrange (1975). They have calculated (by 
numerical integration of Takagi's equations) the trans- 
mitted and reflected intensities by a crystal distorted 
with a constant strain gradient, assuming a pseudo 
plane wave and no absorption. The results showed that 
new wave fields appear for values of B >> 1 and in the 
region z ~_ z 0 where ,7(z0) = 0. 

The intensity I s of the new wave field, as compared 
to that of the incident intensity I 0' was empirically 

shown, from the numerical results obtained, to be of the 
type: 

I0 

where a was a constant. 
The present work, apart from the fact that it provides 

a theoretical explanation of these 'experimental' results, 
allows one to give a theoretical value for a: identifying 
exp(-ct/B) with exp(-2~zl vl) gives a = ~z/2. 

Introducing the parameter fl = 2rdUA which, in the 
above-mentioned computer experiment, served as a 
measure of the strain gradient, gives the theoretical 
result: 

Is = e-~2/'l/( (36) 
I0 

Comparison of the slope of the curve log(Is/I0) as a 
function of lift in Balibar, Epelboin & Malgrange 
(1975) (0.29 ~n -1) and of the numerical value of rt2/A 
(0.28 jam -1 in that case) shows that theory and 
'computer experiments' are in very good agreement. 

Conclus ion  

Penning, who was a pioneer (his thesis goes back to 
1966) in the investigation of X-ray propagation in a 
crystal with a uniform strain gradient, has already 
mentioned the possibility of interbranch scattering for 
large values of IBI and even made a conjecture as to 
the analytical form of the extra wave-field intensity in 
the frame of the Eikonal theory. The present work 
differs from his in the fact that the existence of such an 
extra field has been demonstrated, i.e. is extracted from 
Maxwell's equations themselves, by an analysis of the 
appropriate Green function. 

Following this procedure, it has been shown that the 
'normal' propagation of a given wave field is perturbed 
whenever the curvature of its trajectory becomes too 
strong: a new wave field then appears, precisely in the 
region of maximum curvature. Our treatment allows an 
exact calculation of the fraction e -2'r~v~ of the original 
intensity which is transferred to the new wave field. 
This fraction depends only on the value of the 
deformation gradient. From which it follows that the 
reflecting power of a crystal with a uniform strain 
gradient should differ from that of a perfect crystal by a 
simple multiplicative factor e -2hI vl. 

Still, the present analysis is restricted to the case of 
a uniform strain gradient, a rather academic situation. 
The next step should now be to perform the same work 
assuming a real defect (twin boundary or, even better, a 
dislocation). This is mathematically more involved. In 
this respect, the analogy which can be drawn between 
the present situation and that of scattering by a 
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potential barrier in quantum mechanics should serve as 
a starting point for a 'quasi-classical' treatment of the 
wave-field scattering by a dislocation. This will be, we 
hope, the object of a further publication. 

A P P E N D I X  1 

Here we recall and develop some of the results of the 
Eikonal theory in view of a further comparison with 
our own results. 

The Eikonal theory deals with the case of a pseudo 
plane wave, i.e. a wave characterized by a given single 
value r/0 of its deviation parameter but of finite lateral 
extension. These two characteristics are, in principle, 
contradictory, since a finite lateral width should result 
in a finite dispersion Ar/0 in %; in spite of this, the 
concept of a pseudo plane wave is relevant if Ar/0 ,~ 1 
and it corresponds to the experimental situation of a 
collimated plane wave. 

Trajectories 

Penning & Polder (1961), and Kato (1963b, 1964) 
have shown that the energy of such a pseudo plane 
wave flows, in the crystal, along two hyperbolic 
trajectories (Fig. 8), the parametric equations of which 
are: 

A A 1 
z = - - ( ~ h  + C0)- (r/-- %) (A.I.1) 

n 2n B 

X =  
A 

- -  tg  0 ( ~  h - -  Co) 

A tgO r/2 = _ + - - - -  (V/1 + - V / 1  + r/E). (A.1.2) 
2n B 

In (A.1.2) and in the following results the upper sign 
(lower sign) corresponds to wave field [1] (wave field 
[2]). Now, if one considers a source point Po and a 
point P inside the crystal (Fig. 9), there exist two 

P[z] P[q 

Fig. 8. Optical paths corresponding to an incident pseudo plane 
wave with a given deviation parameter r/o in the case I B I ~ 0 but 
,~1. 

possible energy trajectories from P0 to P. They corre- 
spond to two different values of r/0/~ l and r/0/21 associ- 
ated with wave fields [1] and [2] respectively. For large 
values of B, It/01 and 

I r/I = It/0 + (2nBz/A) l, 

the corresponding hyperbolae reduce to two broken 
lines (Fig. 10). In this case, r/or1 j and r/012 ] reduce to: 

r/or11 = --2B~ o (A. 1.3) 

r/0/21 = --2B~ h. (A. 1.4) 

Phase change along a trajectory 

The general formula for the phase change along a 
trajectory P0 --' P is given by Kato (1964, 1974): 

, A 
A~°y(Po --' P) = Kh.PoP + Z o ~  (~h + ~0) 

2 cos 0 

+ (T--  Nh)tj ]. (A.1.5) 

B F(~o,~h ) A 

Fig. 9. The incident wave is spherical. IBI 4= 0 but ,~ 1. Given two 
points Po and P, energy is transferred from Po to P along any of 
the two hyperbolic optical paths shown here. These paths 
correspond to two different values r/or1 ] and r/ol2[ of the parameter 
r/0. 

Fig. 10. Incident spherical wave I B I ~ 0 and >> 1. The optical paths 
through which energy is transferred from P0 to P reduce to two 
broken lines PoS[IIP and PoSi21P. PoStq = (A/n cos 0) ~o, 
PoSen = (A/n cos 0) ~h" 
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K h is a constant wavevector linking the reciprocal- 
lattice point H to the Laue point L a. The first two 
terms are purely geometrical factors which do not 
depend on the deviation parameter or on the strain 
gradient. We shall drop them hereafter and consider 
only ( T -  Na)tj ]. 

P 

n r dz 1 
T [ j  I = + - -  J -- + - -  IArg sh r/l~ (A.1.6) 

- A  ~ - 2 B  
P0 + 

where 

since Y = 2v 1/2 t l = 2(i /4B) v2 ~ [see (3) and (15) in the 
main text] and 

[ T -  N/TIIj I = --2B~o~ h + B(¢o 2 -- ¢~) -- r/oljl(~h -- Go) 

IYI lEo  12) 
+ + - -  . (A.1.12) 
- 4 4 

This formula holds also if either r/0 or r/is equal to zero 
since the Arg sh r/ terms which have been neglected 
here compared to the terms in r/2 are then equal to zero. 

2nBz 
t /=  11o + - -  (A. 1.7) 

A 

Nhljl = ½h. (up -- Upo ) -- ~ tg 0 0 z  
P o  

+ tg 0 - 7  (h. u) dz 
Ox 

- - -  (h .  u) dx  

(,4.1.8) 

with 

(z B ~  2 
h ' u  = 4B~° ~h = - ' ~  - t ~ 0  " 

(A. 1.8) has to be integrated along the trajectory Po P. 
After some straightforward manipulations one obtains 

1 
NMjI----- 2B¢o¢ h + B(¢~-- ~ )  __ ~ [217OIjlV/i  " + r/2 

a t H  

-- (~V/1 + ~7 2) + Arg sh nlnm, (A. 1.9) 
- ~ ~ r i o [ / l  

In the limit I r/0tjll ~ 1 

and It/pull = r/oul + - ~  >> 1, 

one obtains (using A. 1.2): 

[ T  "--:'- N h l i j  ] = --2B~ o ~n + B ( ~  -- ~ )  - r/otj](~ h - ?--o) 

1 
+ ~ ( t l p t J l l t l p t J l l  - -  qOtjl I r/0tj I I). 
- 4B 

(A.I.IO) 

Under the conditions: 

B > 0 ( B  < 0 )  

and r/Otjl < 0 (>0); r/ptj I > 0 (<0); 

1 1 
4B (r/Pl ~/nl - r/°l ~/°1)= 41B-~ -(r/2 + "°2) 

=¼(IYI 2+ I Yol2), (A . I . l l )  

A P P E N D I X  2 

Let us consider an incident plane wave of intensity 10 
with a departure from Bragg angle equal to AO and a 
corresponding t/parameter of value t/o. 

In order to simplify we assume that the reflecting 
planes are normal to the crystal surfaces of the crystal 
(symmetric Laue case). Consequently 

AO sin 20 

r / ° -  CX/~hX h 

According to the usual Ewald-Laue theory, this plane 
wave generates in the crystal two wave fields of 
intensity lj  ( j  = 1,2) near the entrance surface: 

where 

1 
I / - -  1 + ~o  (A.2 .1)  

~jo = D~/Doj  = - r / o  -T- V/1 + r/o 2 (A.2.2) 

(upper sign: wave field 1; lower sign: wave field 2). 
For a large and negative value of r/o (as is assumed 

in this paper) 

1 
~10- - -  and ~2o--- 21t/ol (A.2.3) 

21r/ol 

~o<0 

) 

¥Sh $o~ 

) 

Fig. 11. Splitting of  the intensity between wave field 1 and wave 
field 2 at the entrance surface in the crystal. The wave field which 
is drawn here in full line is the one into which goes most  of  the 
intensity, assuming a large value of  I t/ol, i .e. wave field 1 if t/o < 0 
or wave field 2 if r/o > 0. 
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so tha t  

1 
11~_ 1 - - -  

4~o 2 
___1 

(A.2.4)  
I 

12 ,~ 4r/2. 

F o r  large values  o f  I r/01, mos t  o f  the  in tens i ty  goes into 
the  wave  field which  p ropaga t e s  close to So: wave  field 1 
for  r/0 < 0 and  wave  field 2 for r/0 > 0 (Fig. 11). 

In  a case  o f  zero  absorp t ion ,  the in tens i ty  is 
conse rved  a long  each  wave  field. A t  the  exit surface  
each  wave  field splits into two  waves :  the  reflected wave  
( intensi ty  IR) and  the  re f rac ted  wave  ( in tensi ty  17.) such 
tha t  

dj~ 2 1 
1 I j; l j- ¢2 Ij, (A.2.5) 

1 +  je 

where  Cj~ is the  va lue  o f  ~ at the  exit surface  (~je = - tie 

T- V/1 + r/i), r/~ being the va lue  o f  the  devia t ion  
p a r a m e t e r  at  the  exit surface  (Fig. 12). I f  r/e is large and  

Sh h i  I(1_ 1__~_) so 
4~ 4~g 

(a) 

\ 
Sh I(1- I__L_.) I so 

4n# ~n~ 

(b) 

Fig. 12. At the exit surface, each wave field splits into a reflected 
and a refracted wave. The respective values of the intensities 
depend on the direction of the wave field in the crystal and 
consequently on the value of the parameter r/at the exit surface, 
noted here r/e. It/el is assumed to be large. (a) The wave field in 
the crystal is of type [1] if r/e is <0 or of type [2] if r/e is >0. A 
very small fraction of the intensity 1/4r/2 goes into the reflected 
wave. (b) The wave field in the crystal is of type [ 1 ] if qe is >0 or 
of type [2] if r/e is <0. A large fraction of the intensity (1 - 1/4r/2 
_~ 1) goes into the reflected wave. 

posi t ive 

IR, ~11 1 - ~11 

1 

1 R , -  4r/~ 12 • 

I f  r/e is large and  negat ive  

1 
1R, ~ ~4r/----711 

1R2 ~'~ 1 - -  I2 ~ I 2. 

(A.2.6)  

(A.2.7)  
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