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Abstract

Although it is commonly invoked, the phenomenon of
‘creation of new wave fields’, which is responsible for
some of the features visible on topographic images, has
never been really explained in theoretical terms. This is
done here in the case of a crystal deformed by a
uniform strain gradient. The appropriate Green func-
tion is expanded in reciprocal space as a wave packet
of non-plane waves, each component corresponding to
a single value of the deviation parameter at the entrance
surface. It is then shown that each component of this
wave packet is made up of four parts, two of which can
be identified as ‘normal’ wave fields (i.e. those predicted

0567-7394/83/030387-13%$01.50

by the Eikonal theory); the two others are the so-called
‘created wave fields’; it is shown that they correspond
to interbranch scattering from one branch of the
dispersion surface to the other and give rise to two
extra beams. These created wave fields extract a
fraction e=2*'*' out of the normal energy flow (vl being
inversely proportional to the strain gradient), in full
agreement with previous computer experiments.

I. Introduction

Understanding the so-called ‘creation of new wave
fields’ in highly distorted parts of a crystal has been one

© 1983 International Union of Crystallography
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of the major challenges of the dynamical theory of
X-ray propagation, over the past 15 years. This
phenomenon was first predicted on a theoretical basis
by Penning (1966) in his thesis and was suggested by
A. Authier in 1966 at the 15th Denver Conference on
X-ray Analysis as an empirical explanation (Authier,
1967) for some of the features of the topographic image
of a single dislocation: according to Authier, when
travelling in a sufficiently distorted region, a given wave
field (i.e. a set of two plane waves, represented by a
single point P; on the dispersion surface in reciprocal
space) would give rise to two wave fields; one of them,
the ‘ordinary’ wave field, being the expected con-
tinuation of the initial wave field (with a tie-point lying
on the same branch of the dispersion surface as P)),
while the other, the ‘newly created wave field’, would
propagate in a quite different, unexpected direction and
would correspond to a tie-point lying on the opposite
branch of the dispersion surface (this is the reason why
this phenomenon is sometimes called ‘interbranch
scattering’).

The idea of interbranch scattering aiready lies
implicitly in the lamellar models proposed for the study
of the propagation of X-rays in deformed crystals
(Authier, 1961; Kato, 1963a). In these models the
boundary conditions are applied at the interface
between neighbouring slices.

Since then, this phenomenological statement has
proved to be very useful as an empirical tool for the
explanation of the observed images of certain types of
defects (Authier, 1977). But no theoretical formulation
of it has ever been given.

Clearly this phenomenon which contradicts the usual
ray theory occurs when the Eikonal approximation
(Kato, 1964; Penning, 1966) becomes invalid. Its
theoretical treatment requires that the dynamical
theory be expanded beyond the limits of applicability of
the Eikonal approximation. This is, at least in principle,
achieved by Takagi’s (1969) theory which establishes
the partial differential equations (along with the
boundary conditions) to which the amplitude of the
crystal wave must obey. If one takes into account the
actual experimental resolution, this theory is valid for
any strength of the deformation.

In contrast to the Eikonal theory, Takagi’s treat-
ment does not provide a direct analytical expression for
the crystal wave. This latter is obtained as the
convolution product of the amplitude distribution on
the entrance surface (which depends on the form of the
incident wave in vacuum) by the ‘influence’ or ‘Green’
function (which depends explicitly on the field of
deformation in the bulk of the crystal). The math-
ematical difficulties involved are such that the influence
function has been calculated only in some few cases
(Chukhovskii, 1974; Katagawa & Kato, 1974;
Litzman & Janacek, 1974). Among these is the case of
a crystal with a uniform strain gradient; the influence
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function is then some confluent hypergeometric
function. Although this, in principle, solves the problem
of the propagation of an X-ray wave in such a medium,
and therefore should account for the appearance of a
‘recreated’” wave field for large values of the strain
gradient, all attempts to separate the ‘ordinary’ wave
field from the ‘recreated’ one in the expression of the
amplitude have failed up to now (Chukhovskii &
Petrashen’, 1977).

The reason for this is clear: the Green function which
represents the influence of a single point P, (generally
on the entrance surface) at another given point P
(generally, on the exit surface) operates in direct space
(or r space), while the concept of wave field belongs to
a representation of the wave in reciprocal (or K) space.
A wave field is, by definition, a (single) point in
reciprocal space. No wonder, then, that the Green
function which is a function of r, at P and r,_at P, does
not provide a simple connection between the wave
fields at the entrance surface and those at the exit
surface. Clearly, this connection can be achieved only
through an expansion of the Green function in
reciprocal space.

The three following examples show that the Green
function has to be expanded in reciprocal space in
order to obtain information on the wave-field structure
of the crystal wave.

(1) In the case of a perfect crystal, it is well known
that the Green function is a Bessel function of zeroth
order Jy(x), where y denotes some combination of the
coordinates (both those of the point source P, and
those of the point P where the field is to be calculated).
Convoluting the amplitude distribution corresponding
to an incident plane wave by this J;, one would obtain
the amplitude at P in the form of a sine function.
Writing then this sine as a sum of two imaginary
exponentials, one retrieves the usual wave fields 1 and 2
of the Ewald—Laue theory (Balibar, 1969a), as expec-
ted. But though the mathematical manipulation in-
volved here [writing sin x as (e — e~*)/2i] is of the
most trivial type, one still lacks physical reasons for
doing so. Even in that case, the two wave fields come
out of the Green function in a rather artificial manner.

(2) It would seem then, that separating the Green
function itself into two parts would make the structure
in wave fields appear more naturally. Since Jy(y) =
${H}(x) + H}(x)] (where H} and H{ are two Hankel
functions), the expression for the amplitude at P is,
for any shape of the incident wave, made up of
two parts: one which is obtained through convolution
of the incident amplitude distribution by Hj and the
other which involves H2. Having shown that these two
parts correspond, respectively, to a weakly absorbed
mode, and a strongly absorbed mode, one of us
(Balibar, 1968, 1969b, 1970) has proposed a descrip-
tion of the crystal wave in terms of ‘generalized wave
fields’. Apart from the fact that it relies on a
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mathematical formula [/, = $}(H} + H?)] without any
real physical meaning, this model does not provide any
understanding of how the structure in K space of the
crystal wave is related to that of the incident wave.

(3) Our last example is the work by Chukhovskii &
Petrashen’ (1977) where the procedure used in example
(2) is extended to the case of a crystal with a uniform
strain gradient. Having explicitly calculated the func-
tion which replaces J, in that case, these authors were
able to represent it as a sum of two functions (the
equivalent of the previous Hankel functions H} and
H?). But this separation, obtained by means of a
general mathematical formula, still does not provide
any understanding of how the K structure of the
incident wave is transformed in the crystal. Nor does it
show any ‘creation of new wave fields’ for sufficiently
large values of the strain gradient.

In this paper we show that by a proper expansion of
the Green function in reciprocal space (or K vectors
space) the problem of how one wavefield can
(for large values of the deformation) give two wave
fields (i.e. two points in reciprocal space) can be solved.
This treatment, which is performed for the case of a
uniform strain gradient, could give some hints on how
to deal with a more general type of deformation.

II. Expansion of the Green function as a wave packet
(for a constant strain gradient)

Because of its (relative) simplicity, the case of a crystal
with a uniform strain gradient has been extensively
studied. Kato (1964) and Penning & Polder (1961)
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who have treated it on the basis of the Eikonal
approximation (i.e. small strain gradient), have shown
that the energy trajectories for the two wave fields
induced by an incident plane wave are portions of
hyperbolae, the characteristics of which depend on the
values of the deformation and on the departure of the
incident wave from Bragg’s angle at the entrance
surface. The general treatment, on the basis of Takagi’s
equations, has been performed by Chukhovskii (1974),
Katagawa & Kato (1974), and Litzman & Janacek
(1974) who all have given the exact analytical form of
the influence function.

For reasons of simplicity, and after Chukhovskii &
Petrashen’ (1977), let us assume a transmission
symmetric case and a constant strain gradient such
that:

h.u = 4BSOS,,
62
" 4 s, 05,

where h = reciprocal-lattice vector (= 27 times the usual
reciprocal-lattice vector = 2mhg, ), u = atomic
displacement, and s, and s, are reduced coordinates in
the transmitted and reflected directions (see Table 1
and Fig. 1).

The Green function for the reflected () wave is (see
Chukhovskii & Petrashen’, 1977):

Gh(P09P)= Gh[r(Po)s I'(P)]
= [@(éh) - @(—fo)] lFl[_v,I; _41Béo é;,]- (2)

r(P,) and r(P) are, respectively, the position vectors of

(h.u), (1

Table 1. Comparison of the system of coordinates and deformation parameter used by different authors

(symmetric case)
Kato Penning & Polder Chukhovskii and this paper
X 1 1 27
{h]/2sin 8 - N 2z
A A
Coordinate system x 0 70Y~x x 70i‘
[5;,] [so]s [sh] [So], [sh] [so]y
Reduced coordinates
Coordinates along n
Kyand K, [so], [s4) [so}, [s4), So= i [so] cos &
" [su)cos 6
Sy =—1S,) cos
h A h
A
Strain gradient By Bo=—Px B= o By
n

Parameter | 7| at depth z n(z) = n(0) + fyz

1(z) = 7(0) — fpz

2Bn
n(z) = n(0) +

z
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[o} TR, Po 2.0

P
z

Fig. 1. Geometrical parameters in the case of a unit point source
located at P, on the entrance surface. One calculates the wave
G, (P, P) induced by such a source at P(&, &,) in the crystal.

a current point P, on the entrance surface and of the
point P on the exit surface where the amplitude of the &
wave is to be calculated (Fig. 1). @ is the usual step
function.

&= sy(P) — Sh(Po)§
& = 5o(P) — 54(Py)s
i

V=E; 3

,F, is the confluent hypergeometric function.
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The Green function (2) can be expanded in
reciprocal space by means of the Laplace transform,
according to the following procedure. This is carried
out here only on the term

0(6’1) F ( v’ k)
since the calculation relative to
—0(—¢) Fi(—»; 15

would be quite similar.
As a function of &, (& being considered as a
parameter),

—4iB¢&, &)

—4iB&, &)

@(éh) 1F1 (’_va 19 _4lBéo éh)

is expanded as (see Higher Transcental Functions,
1953):

@(éh) 1F1(—V,1§ _4iBéo ﬁh)
1 Po+ico
== f - \(p + HBEY e dp,  (4)
Po— i

where p and ¢, are conjugate variables relative to the
Laplace transform.

Expressing in turn (p + 4iB&,)” in terms of its
inverse Laplace transform, one obtains:

1 © o1 Po +ic0 [ (-1 (é;,—t)"
O(&,) Fi(—n1; —4iBE &) _—f e~ 4Bt d f ePt=0 p=v=14 =f ettt hT ]
" “) =2 ey ) P, T T(1+v)
$n —p—
=exp[—2iB(&, + &) + 2iB&] f B +8n) (G — t)({_—t)_" —2iB(%, —t)’ L]ezisrz dr. (5)
Ird+v I'(—v)

0

A second Laplace transform performed on this convolution product then leads (after some straightforward

manipulation) to:

1 i 1/2
(&) F (—v1; —4iB& &) = — e“’“’”( —) expliB(& — & — 2¢&,&)]
2m 4B
Pot+ico p i |12 i\
X f eXP[E (& — 50)] [(43) P] D_, _, [(— ZE) {p—4iB(& + &I dp, (6)
Pg—i®
where D (z) is the parabolic cylinder function of order ».
A similar calculation would show that:
1 ‘ 172
O0(—&) F,(—v,1; —4iB& &) =— g=intr+ /2 expliB(& — & — 2&, &)
2m 4B
Pyt ico » *l i\ i\
X fi CXP[E(Q, - éo)J'D_ 1 [(— E) P] D, [(E) {p—4iB(& + &)t [dp, @)
Pg—i0
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so that finally the Green function (2) is:

Po+ic0

Gh(éoaéh) = Ph(p) dp’ (8)

Po—i0

where

1
Pi(p)=——— 7™y expliB(& — & — 2,5

X exp[g (é}, - éo):l [D,(_iYo) D_,,_l(_Y)

—D_,_(-Y,) D (—iY)l. ()
The parameters Y, and Y introduced in (9) are such
that
i 172
— =y p=—iY, 10
45’) p P Lr (10
i\ ] 4iBnz .
(ﬁ) [p—4iB(& + &) = v'? (p - ) =—iY
1)
so that
m
Y= Y0+4v"2372. 12)

This should be compared to the well known formula
relating the value of the deviation parameter # at a
depth z to its value #, at the entrance surface:

2Bn
A

n="mn,+ z (13)

Let us recall that, in a symmetrical case, n =
A6sin 26/(C\/x, x7), where 46 is the departure from
Bragg angle, y, and yx; are the 4 and h Fourier
coefficients of the electrical susceptibility and C is the
polarization factor. Comparing (10), (12) and (13)
leads to

p=—ivV2Y, = 2in, (149

with
Y(z) = 2vV2 y(2). (15)

Equation (14) shows that the variable of integration in
(8) is directly proportional to the deviation parameter
1, at the entrance surface. The interpretation of P,(p)
then becomes clear: if one expands the spherical wave
(which on the vacuum side of the entrance surface
represents a unit point source at P,) as a sum of plane
waves (each being characterized by a single value of p
or, alternatively, #,, then P,(p) is the wave induced in
the crystal at a point P(&),&,) by the component p of
this expansion In other words: each of the vacuum
plane-wave components is transformed, through the

CHUKHOVSKII AND C. MALGRANGE
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crystal, in P,(p). Integrating P,(p) over all values of p
then gives the field at P due to a unit point source at
P4(0,0); in other words, the Green function G,(&),¢&,).

IIL. Analytic expression of each component P,(p) as a
function of the deviation parameter

Since we are interested here in the phenomenon of
‘creation’ of ‘new’ wave fields, the analytic form of
P,(p) will be calculated assuming a situation for which
this phenomenon is expected. According to an argu-
ment first stated by Penning & Polder (1961), this
‘creation’ is most likely to occur at a depth z = z; such
that n(z,) = 0, since the curvature of the ray trajectory
is then at its maximum. This conjecture has been amply
verified by a computer experiment performed on the
basis of Takagi’s equations (Balibar, Epelboin &
Malgrange, 1975). In this same computer experiment,
the value of 1B for which ‘creation’ becomes notice-
able has been estimated: 4|B| must be of the order of 3
so that 10% of the total intensity be diverted in the
‘created’ wave fields. This result is in agreement with
the criterion previously given by Balibar (1970) on a
theoretical basis: creation of new wave fields is
expected for 4/Bl > 1. We shall, therefore, from now
on, assume:

(1) IBI » 1 and, for instance, B > 0. (A positive
value of B corresponds to the geometry of Fig. 2.)

(2) The plane z = z, [such that #(z,) = 0] lies inside
the crystal (see Fig. 2). For a positive value of B, this
imposes a large and negative value for #, = #(0). 4
priori, we expect that for z < z, the crystal wave will be
of the ‘normal’ type (i.e. only two wave fields) while for
z > z, it will exhibit two extra terms.

The assumed conditions and their implications
regarding the various parameters involved are

n(o)<o

B>0
X

'
JECEE DU T W ' ¢ 2 ')
4 o n (Zo)

I

n(z)>o

Fig. 2. Geometry of the crystal deformation in the case B > 0.
Creation of a new wave field is expected to occur in the region
z ~ z, where the curvature of the ray trajectory is a maximum
[1(zo) = 01
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summarized below:

(1) Blarge and >0 = |yl =‘4IB <1 v=lvle™?
(16)
(2) 7,=n(0) large and <0 = Y, = | Y, e5%4; 17
B
(3) n(z)=n(0) + 271’7 z large and >0 (z > z,)
=>Y=1Yle" (18)

Under these conditions P,( p) at a given point (&,,¢,)
is (see Table 2):

Py(p)= expliB(& — & — 2&, &) exp[g (& — Co)}

1 (Y,\" 1
X {vmz— (70) 7 exp[}(Yg — YZ)]
T

1Y\ 1
_ pliny 12 _(_) —expl{(Y?— Y]
27 Yo YO

_ ein’/4e—3in’u/2(l _ eZirw)l/Z i (YYO)”
2n
x expl$(Y? + Y]

_ e—irr/4e3irw/2(1 _ eZinu)l/Z VL(YYO)_D_I
2n

x expl—HY? + Yoz)]]. (19)

As conjectured, P,(p) is a sum of four terms, 4, B, C,
D:

1
A =—expliB(& — & — 2§ ¢&)]
2n

v
ei/4(|yo|1 —1Y12) e

1Yl

Y
% eP/2e—8)|p|1/2 | _ 0

(20a)

Table 2. Asymptotic expansion of the parabolic
cylinder functions D, for large values of the argument u

Parabolic cylinder functions D,

N

D‘,(ll) =y e—u-‘/a _
-

Ul e g (u).

where ¢_(u) depends on the argument y of u.

3z 3n
——<x<— =0
4 4
n Sn )
—<x<— ¢gluy=e"
4 4
Sn ) ,
——<x<—= sw=e"
2 X
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1
B = —expliB(& — & — 24, &)
27

14
el/4(4Y|’—IYol2) e~y

1Y,

Y
X eP/2o—lo)| p| 12 { |

Y,

(20b)

C=— o expliB(G — &~ 26,8 e

X ein:/4(| Yl Yol)u ei/4(|Y|’+|yo|’) (1 _ e—zmm)llz

(20¢)
1
D = —expliB(& — & — 26 ¢,)]
2n
X eP/2n—t) g=ix/A|y| (| Y]] Yyl)—o~!
X e—i/4(xY|’+|Y,)12) (1 _ e—ZnIvI)I/Z. (20d)

Correlatively, G,(P,,P) is a sum of four integrals.

Note that this conclusion holds only under the
conditions [see (17)~(18)] that Y and Y, be of opposite
signs. It can be easily shown that if ¥ and Y, were of
the same sign, i.e. if the conditions 7(z) = 0 were not
fulfilled inside the crystal, then P,(p) in (19) would
reduce to only two terms — as expected.

IV. Physical interpretation — ‘creation’ of new waves

At this stage one would like to follow Kato’s procedure
and obtain the physical interpretation of the four terms
involved in (20) by means of the stationary-phase
method (Kato, 1961).

Let us call ¢,, ¢p, ¢- and @, the phases in (20a),
(20b), (20c) and (20d), respectively, They can be
written, using (10) and (11), as:

@4 = —2B& — 4B &, + p&,
¢p = 2iB& — p&,

in2

ip
= 2iB& — p&, — —
Pc & —p& T

i
¢p = —2iB&; — 4iB& &, + p&, + @p’- @n

Unfortunately, it turns out that integration by the
stationary-phase method can be performed only on ¢,
and ¢, since the phases ¢, and @, cannot be made
stationary owing to their linearity in p. We shall
therefore use the stationary-phase method for C and D
only and another method for 4 and B.

A. The normal part of G,(P,,P)

The phases ¢ and ¢,, are stationary for
phy=4iBg and Py = 4iB¢,,

respectively.

(22)
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The corresponding values of 7, are:
’lgu] =-2B¢, and ’7312] = —2B¢,. (23)

Comparison with (4.1.3) and (4.1.4) in Appendix 1
shows that these values of 7, are precisely those which
would characterize the two hyperbolic trajectories
which, according to the Eikonal theory, link P,(0,0) to
P(&y,&y) in the limit B > 1 and |7, and I7,| > 1.

In other words: in the case B > 1, the ‘normal’ part
of G,(P,,P) is zero everywhere except along the
trajectories (see Fig. 10) along which energy is
normally transferred in the case B < 1. This is, of
course, the reason why we call this part of G,(P,,P) the
‘normal’ one.

B. The ‘non-normal’ part of G,(P,,P)

We call ‘non-normal’ what is left once the ‘normal’
part has been taken into account:
Po+io

expliB(& — & — 2§, &) e?/ 26 —0)

Po—lioo
2 (Yol 1
x — [—| — expl3(YZ—Y?]dp (24a
27:(Y)Yp"° )ldp (24a)
and
Potio
expliB(&3 — & — 2&,&,)] eP/Hb—h) p2inv
po—ioo

1/2 v
i (1) - expli(r - Vldp (240

x_
2n \Y, Y,

or, alternatively (upon replacement of Y, and Y by their
expression as functions of p):

1
27 EXP (—2iB& — 4iB&, &)
n
Po+io

X f p"lp — 4iB(E, + &)1 ePb dp

Po—lico

(25a)
and
1
— exp(2iB&) e
27

Po+ico

X f p~ ' [p— 4iB(¢, + &)]” ePh dp. (25b)

Po—ico

As already mentioned, integration by the stationary-
phase method is not possible. Nevertheless, (25a) and
(25b) can be calculated directly using the properties of
the Laplace transform (see Higher Transcendental
Functions, 1953), which gives for (25a)

iexp(2iB&2) | F\[—v,1; —4iB(& + &,) &) O(&,) (26a)
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and for (25b)
—ieM™ exp(2iBEY) F\[—v,1; —4iB(&, + &) & O(&,).
(26b)

The same ,F, function as in G,(P,,P) appears [see
equation (2)] except that the argument &, £, has to be
replaced either by (&, + &,) &, in (26a) or (&, + &,) & in
(26b). Expression (26a), for instance, is then cal-
culated following the procedure which led from (4) to
(8) and (9), & being replaced by (& + &, and &,
unchanged. One then obtains for the integrand, in the
limit v » 0 and 1Y,l and |Y! > 1, a sum of four terms
analogous to (20a)-(20d). It will be shown in the
following section that, among these four terms, (20c) is
predominant. Since the phase of this major term varies
quadratically with p, it can be integrated using the
stationary-phase method. The stationary condition is
similar to (22) and (23) except that &, has to be
replaced by (&, + &,); this gives

Pﬁ.‘] =4iB(& + ¢,) or 77(')'['1] = *23(50 +&). (27

The corresponding optical path (Fig. 3) is a broken
line made of two straight segments, similar to that of
the normal [1] wave field except that the turning point
is now defined by Py S{,; = (4/m cos 8)(&, + &,) so that
Sy coincides with 4, the limit of the Borrmann fan on
the exit surface. We therefore come to the conclusion
that the ‘non-normal’ part (26a) of G,(P,,P) is zero
everywhere except along s,. A similar procedure would
show that the ‘non-normal’ part (265) of G,(P,,P) is

Polo,0)

(0,84 Sp
(0,045 S, Si)(50+%n,0)
BY /AP (3ol /A
Pi(5,,¥0+5n)

\\ I’ .
P80+ Snitn)

Fig. 3. Energy distribution in the crystal due to a unit point source
P,. A fraction of the energy is normally transferred to every
point P of the exit surface along the two normal trajectories
PyS( ;P and P,S;, P. The rest propagates ‘non-normally’, ie.
for each P, it propagates as if it were going to be normally
transferred to two virtual points P, and P{,, lying outside the
crystal. As a consequence, the non-normally transmitted part of
the energy emitted by P, propagates in the crystal, parallel to s,
and s,, along the two edges of the Borrmann fan.
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zero everywhere except along s,. For this second extra
wave:

P =4B(&+ &) or myh =—2B(+ &) (28)

V. Energy flow of an incident pseudo plane wave.
Interbranch scattering

Let us now consider an incident pseudo plane wave, i.e.
a plane wave of finite lateral expansion (see Appendix
1). Let n, be its characteristic deviation parameter at
the entrance surface. G,(P,,P) has been expressed in
(8) as an integral over p or alternatively over #, as p =
—2iny; therefore the integrand in (8), P,(p) =
P,(—2in,), can be considered as representing the wave
which is induced in the crystal by the considered
pseudo plane wave. This conjecture is confirmed by the
fact that the phases of the normal parts of P,(p) are
identical to the Eikonal calculated in Appendix 1
[compare ¢ and @, in (21) with (4.1.12)].

Let us now study in more detail the four terms 4, B,
C and D involved in P,(p) = 4 + B + C + D [equation
(20)1.

A. Energy trajectories

In the previous section we have shown how the
energy of a unit point source (i.e. an incident spherical
wave) is distributed inside the crystal. These results are
pictured on the left side of Fig. 4 where 4(c)

A

P
B£Oand K1

St 50T (-2

B» 1 N

Fig. 4. Wave propagation in a crystal, assuming: left: an incident
spherical wave (a,c.e); right: an incident pseudo plane wave
(b.d, f). (a),(b) A perfect crystal B =0.(c),(d) A slightly distorted
crystal |Bl # 0 and |BI < 1. (e),(f) A highly distorted crystal
IBl>1.

! ©
PD
St
SE]
Siz] P
G)]

DYNAMICAL X-RAY PROPAGATION

corresponds to |Bl < 1 and 4(e) to |Bl > 1. The main
difference between 4(e) and 4(c) is that in the case
IBl > 1 new energy flow trajectories appear on the
edges of the Borrmann fan and only there (§ IV). From
this, one can infer the energy flow inside the crystal for
an incident pseudo plane wave in the case |Bl » 1 (Fig.
4 f) from the case |1Bl < 1 (Fig. 4d). The conclusion is
that an incident pseudo plane wave induces four wave
fields inside the crystal; two of these are ‘normal’, and
the other two are the so-called ‘recreated wave fields’.

B. Intensity splitting

The intensities of these four wave fields are obtained
by squaring the amplitudes 4, B, C and D in (20).
In the limit vl — O this gives:

I, ~1xe W x —
A 4”2
1 :—1—— x e~ i ]
" A

Ic~1x(1—e?")x1

1
Iy~— x (1 —e ) x —, 29)
P4 4n? (
The intensities have been written in this peculiar form
on purpose, in order to evidence three successive

splittings of the intensity during propagation:

(a) Remembering (see Appendix 2) that at the
entrance surface the incident beam (of intensity
normalized to 1) corresponding to a pseudo plane wave
of deviation parameter 7, is split into two wave fields,
of respective intensities 1/472 and 1 — (1/413) ~ 1 (as
In,! is large), we can interpret the first factor in each of
the four intensities (29) as representing the splitting of
the incident intensity between the two wave fields at the
entrance surface. /, and I. thus pertain to the same
wave field (wave field [1] if B > 0) while I, and I,
should be associated with the other.

(b) These wave fields propagate normally (i.e.
according to hyperbolic trajectories which in the case
Bl > 1 reduce to broken lines) up to a region at a
depth z, such that 7(z,) ~ 0, where, as already shown
creation of new wave fields occurs. The second factor
in the intensities (29) indicates how the intensity of a
given wave field is then shared between the normal and
the created wave fields. For instance, the wave field
which propagates with an intensity 1/4#2 in the region
z < z, (see Iy and Ip) is split in the region z ~ z, into
two parts of relative intensities e~2"* (extra wave field)
and (1 — e~2""*") (normal wave field).

(c) The third factor in each term of (29) represents the
splitting of the intensity at the exit surface for each of
the four wave fields which propagate in the region
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z > z,. n, the deviation parameter at the exit surface, is
the same for all four wave fields which means that
equation (13) holds for new wave fields as well. This
discussion is summarized in Fig. 5.

C. Interbranch scattering

The question now is: ‘Do the extra wave fields
correspond to interbranch scattering?’ (interbranch
meaning a ‘jump’ of the tie-point from one branch to
the other in the process of the creation of a new wave
field at z ~ z,).

This question can be answered by consideration
of the phases involved in (20). Except for a factor

B(&— & — 2&,&) — n(&, — &) these phases are:

1
Oi=——m—n

41BI
1
%= a0 (* —n3)
1
c=Tor (5 + 1)
o= (15— 1) (30)

'/
/

and s

1

i

b1 g

c2K1

Ve
|

|

|

|

nflarge <o) nellarge>0) Sn
|

n-0
recreation zone
z=0 z=20

Fig. 5. Propagation of a pseudo plane wave inside a crystal
distorted by a constant strain gradient |1Bl > | (here: B > 0). #,,
the value of the deviation parameter at the entrance surface, is
large and negative. 7 then varies monotonically with the depth z

inside the crystal. At z = z,, n reaches the value 7 = 0, the |

curvature of the wave field is the maximum and new wave fields
are ‘created’; each new wave field takes a fraction e=2""' of the
intensity of the wave from which it is ‘created’. The splitting
of the intensity among the two wave fields at the entrance
surface, and among the refracted and reflected wave at the exit
surface, is in agreement with the results of the ordinary
dynamical theory (as long as one considers that the variations of
n follows the same laws as in a slightly distorted crystal).
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As can be seen from (4.1.12) in Appendix 1, a + sign
in front of #* (respectively #2) corresponds to a wave
field of type [1] while a — sign is characteristic of a type
[2] wave field.

Therefore, the tie-points of ‘normal wave fields’ [C
and D in (20)] stay on the same branch of the
dispersion surface (see in Fig. 6 the black arrows going
from M to R for wave field [1], for example, which
corresponds to the C term). The ‘extra wave fields’ [4
and B in (20)] exhibit a mixed dependence (#2/41BI) —
(n*/41B1) or (—n3/4|1B1) + (#*/4!Bl). The A term
corresponds to a tie-point on branch [1] (+#3/4iBl),
which upon arrival at region z ~ z,, jumps to branch
[2] (—n*4IBl) — see black arrows from M to N
followed by white arrows from P to Q after the jump
from N to P. This term is responsible for the
interbranch scattering from branch [1] to branch [2].
Similarly the B term takes into account interbranch
scattering from branch [2] to branch [1].

This argument can be stated more precisely by
comparing the phase ¢, (or ¢,) with the Eikonal along
the corresponding trajectory of mixed [1] and [2] type.

Let us consider, as in Fig. 7, a wave field of type [1]
which, after the turning point S,, where # = 0, splits
into a normal wave field (trajectory S,; P) and a newly

Fig. 6. Interbranch scattering (only one wave field, here [1], has
been pictured for clarity). At a depth z ~ z,, the wave field which
from z = 0 to z, propagates as a type [1] wave field (black
arrows from M to N), splits into two waves, one of type [1]
(black arrows from N to R) and one of type [2] (white arrows
from Pto Q).

\Po(o,m

F

Mo —7-

S

Ne=No+

2NBz
A

P(%.8h) P(%48h,0)

Fig. 7. Schematic drawing showing the ray paths corresponding to
interbranch scattering. A normal wave field (here of type [1])
follows Py S, and then splits into two wave fields: a normal one
propagating along S;,;P and a new one (here of type [2])
propagating along S|,, P'.
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created wave field (trajectory S;,;P'). The phase
change along P, S|, P’ is, from (20),

04 =B(& — &% — 2& &) — Mo(Gh — &)

2 2
+ M 1 i G1)
4|Bl  4iBI
where & and &, are the coordinates of P, i.e.
=06 +¢
0 v (32)
=0

if & and ¢, are the coordinates of P. B is assumed to be
positive.

Let us check that (31), along with (32), is identical
to the Eikonal which would correspond to a wave field
of type [1] from P, to S, and then a wave field of type
[2] from Sy, to P'. The Eikonal ¢, along P, S, and ¢,
along S, P’ can be calculated from (4.1.12) which
gives the phase ¢; along a wave field j propagating
- from Py(0,0) to P(&,¢,). Then
0

9, &+ nyd 4B

as 7 = 0, &(Spy) = & u(Spy) = 0. ¢, along Sy P’ is
equal to the phase along a wave field 2 going from P, to
F:

(33)

7
=B _——_—
(7] & 4B

(34)
as 1, = 0, &(F) = &, &(F) = 0. Adding (33) and (34)
gives (31) once & and ¢}, have been replaced by their
values (32) and (4.1.3) used.

D. The scattering factor; comparison with previous
computer experiments

As has been stated in § V B, when creation occurs,
the new wave field takes a fraction e=2** out of the
initial intensity, leaving a fraction (1 — e~?"*') in the
beam which keeps going normally. We call this factor
e~ the scattering factor since the phenomenon here
is quite analogous to a scattering process.

This quantity is of importance and it can be related
to computer experiments performed by Balibar, Epel-
boin & Malgrange (1975). They have calculated (by
numerical integration of Takagi’s equations) the trans-
mitted and reflected intensities by a crystal distorted
with a constant strain gradient, assuming a pseudo
plane wave and no absorption. The results showed that
new wave fields appear for values of B > 1 and in the
region z ~ z, where 7(z,) = 0.

The intensity 7, of the new wave field, as compared
to that of the incident intensity I,, was empirically

DYNAMICAL X-RAY PROPAGATION

shown, from the numerical results obtained, to be of the

type:
I, a
— =eX —_—
I, P\

where a was a constant.

The present work, apart from the fact that it provides
a theoretical explanation of these ‘experimental’ results,
allows one to give a theoretical value for a: identifying
exp(—a/B) with exp(—27Iv!) gives a = 7/2.

Introducing the parameter § = 2zB/A which, in the
above-mentioned computer experiment, served as a
measure of the strain gradient, gives the theoretical
result:

(35)

Iy

I

Comparison of the slope of the curve log(/,/I,) as a
function of 1/B in Balibar, Epelboin & Malgrange
(1975) (0-29 um~!) and of the numerical value of 7%/4
(0-28 um™! in that case) shows that theory and
‘computer experiments’ are in very good agreement.

— e—n‘/A/x’.

(36)

Conclusion

Penning, who was a pioneer (his thesis goes back to
1966) in the investigation of X-ray propagation in a
crystal with a uniform strain gradient, has already
mentioned the possibility of interbranch scattering for
large values of |B| and even made a conjecture as to
the analytical form of the extra wave-field intensity in
the frame of the Eikonal theory. The present work
differs from his in the fact that the existence of such an
extra field has been demonstrated, i.e. is extracted from
Maxwell’s equations themselves, by an analysis of the
appropriate Green function.

Following this procedure, it has been shown that the
‘normal’ propagation of a given wave field is perturbed
whenever the curvature of its trajectory becomes too
strong: a new wave field then appears, precisely in the
region of maximum curvature. Our treatment allows an
exact calculation of the fraction e~2*¥ of the original
intensity which is transferred to the new wave field.
This fraction depends only on the value of the
deformation gradient. From which it follows that the
reflecting power of a crystal with a uniform strain
gradient should differ from that of a perfect crystal by a
simple multiplicative factor e=2**'.

Still, the present analysis is restricted to the case of
a uniform strain gradient, a rather academic situation.
The next step should now be to perform the same work
assuming a real defect (twin boundary or, even better, a
dislocation). This is mathematically more involved. In
this respect, the analogy which can be drawn between
the present situation and that of scattering by a
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potential barrier in quantum mechanics should serve as
a starting point for a ‘quasi-classical’ treatment of the
wave-field scattering by a dislocation. This will be, we
hope, the object of a further publication.

APPENDIX 1

Here we recall and develop some of the results of the
Eikonal theory in view of a further comparison with
our own results.

The Eikonal theory deals with the case of a pseudo
plane wave, i.e. a wave characterized by a given single
value #, of its deviation parameter but of finite lateral
extension. These two characteristics are, in principle,
contradictory, since a finite lateral width should result
in a finite dispersion 4#, in #,; in spite of this, the
concept of a pseudo plane wave is relevant if 4z, < 1
and it corresponds to the experimental situation of a
collimated plane wave.

Trajectories

Penning & Polder (1961), and Kato (19635, 1964)
have shown that the energy of such a pseudo plane
wave flows, in the crystal, along two hyperbolic
trajectories (Fig. 8), the parametric equations of which
are:

A 41 AL
2= Gt &) =2 (1= 1) (4.1.1)

A
x= —1tg (5 — &)
/4

= Zii T+ —=\1+nd). (4.1.2)

In (4.1.2) and in the following results the upper sign
(lower sign) corresponds to wave field [1] (wave field
[2]). Now, if one considers a source point P, and a
point P inside the crystal (Fig. 9), there exist two

a\

[d)] U]

Py Py

Fig. 8. Optical paths corresponding to an incident pseudo plane
wave with a given deviation parameter 7, in the case | B| # 0 but
<l.
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possible energy trajectories from P, to P. They corre-
spond to two different values of #,; and 7, associ-
ated with wave fields [1] and [2] respectively. For large
values of B, |7, and

Il =115, + (2nBz/A)1,

the corresponding hyperbolae reduce to two broken
lines (Fig. 10). In this case, #y;,) and 7y, reduce to:

—2B¢,
—2B¢,

(4.1.3)
(4.1.4)

Moty =

Hop21 =

Phase change along a trajectory

The general formula for the phase change along a
trajectory P, — P is given by Kato (1964, 1974):

- A
4¢Py~ P)=K,.PyP + x, Toos d (& + &)
+ (T — Ny jpe (4.1.5)
B P8 A

Fig. 9. The incident wave is spherical. |B| # 0 but < 1. Given two
points P, and P, energy is transferred from P, to P along any of
the two hyperbolic optical paths shown here. These paths
correspond to two different values #,; and #q;, of the parameter

ZASAV

Fo(0.0)

B Pi, 5, A

Fig. 10. Incident spherical wave | Bl # 0 and > 1. The optical paths
through which energy is transferred from P, to P reduce to two
broken lines PyS;,, P and PyS;; P. P,S|,, = (A/n cos 6) &,
Py Sy = (4/mcos 6) &,
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K, is a constant wavevector linking the reciprocal-
lattice point H to the Laue point L,. The first two
terms are purely geometrical factors which do not
depend on the deviation parameter or on the strain
gradient. We shall drop them hereafter and consider
only (T — Ny

d 1
T[”:J_rif_z__= — IArg sh i (4.1.6)
A 4 \/1+ 772 2B
where
2nBz
n="1,+ (4.1.7)
Nh[.’]—fh (llP llPo 2 f t_ga_( -u) dx
+tg 0—(h.u)dz (A.1.8)
ox
with

x? )
tg2 6/’

(4.1.8) has to be integrated along the trajectory Py P.
After some straightforward manipulations one obtains

[2'70111 V1t

— (m/1 + %) + Arg sh g7

In the limit |74 > 1

Br?
hou=4Bg g, =~ (zz_

Nyjy=2B& ¢, + B(G—-&8)t—

(4.1.9)

2nBz

and 7]0“] + — > 1,

! =

one obtains (using 4.1.2):

[T = Nylijy=—2B& ¢, + B(&—&) - Mo i1(Sn — o)

4B ot Moy — Moy Moy 1)-

(4.1.10)
Under the conditions:
B>0(B<0)
and Moy < 0 (>0); 77,5, > 0 (<0);
25 (!l = Mol o) = e (5 + 113)
=4IYI12+1Y,1%), (4.1.11)
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since Y = 2v2 p = 2(i/4B)"? 5 [see (3) and (15) in the
main text] and

[T_ Nh][j] = _ZBéoéh + B(é(z) - é%z) - ”0”](6" - éo)

(|le 1Y, 2
+ + .
4 4

This formula holds also if either #, or 7is equal to zero
since the Argsh n terms which have been neglected
here compared to the terms in #? are then equal to zero.

(4.1.12)

APPENDIX 2

Let us consider an incident plane wave of intensity I
with a departure from Bragg angle equal to 46 and a
corresponding # parameter of value 7.

In order to simplify we assume that the reflecting
planes are normal to the crystal surfaces of the crystal
(symmetric Laue case). Consequently

A0 sin 26
ﬂ —_—e,———————
OV

According to the usual Ewald-Laue theory, this plane
wave generates in the crystal two wave fields of
intensity I; (j = 1,2) near the entrance surface:

L=—:. (4.2.1)

where

(upper sign: wave field 1; lower sign: wave field 2).
For a large and negative value of 7, (as is assumed
in this paper)

Eo=— and & ~ 217, (4.2.3)

217,

Fig. 11. Splitting of the intensity between wave field 1 and wave
field 2 at the entrance surface in the crystal. The wave field which
is drawn here in full line is the one into which goes most of the
intensity, assuming a large value of |#,!, i.e. wave field 1if 7, < 0
or wave field 2 if n, > 0.
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so that
1
II~l———~1
ant
(4.2.4)
I 1
: 47]0

For large values of 17,/, most of the intensity goes into
the wave field which propagates close to s,: wave field 1
for #, < 0 and wave field 2 for 7, > 0 (Fig. 11).

In a case of zero absorption, the intensity is
conserved along each wave field. At the exit surface
each wave field splits into two waves: the reflected wave
(intensity 1) and the refracted wave (intensity I,) such
that

éje
I; Ijly=——1, A.2.5
K= 1+& T4 &, J ( )
where ¢, is the value of £ at the exit surface (, = — 7,

V1 + n2), n, being the value of the deviation
parameter at the exit surface (Fig. 12). If », is large and

\ \

TGS T

ang ng ing ing

(@ ®

Fig. 12. At the exit surface, each wave field splits into a reflected
and a refracted wave. The respective values of the intensities
depend on the direction of the wave field in the crystal and
consequently on the value of the parameter # at the exit surface,
noted here 7,. 17,! is assumed to be large. (@) The wave field in
the crystal is of type [1] if #, is <O or of type [2] if 5, is >0. A
very small fraction of the intensity 1/472 goes into the reflected
wave. (b) The wave field in the crystal is of type [1] if , is >0 or
of type [2] if 1, is <0. A large fraction of the intensity (1 — 1/47?
~ 1) goes into the reflected wave.
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positive
1
Ip ~1,|1 —4—”5 ~1
(4.2.6)
IRz o~ — Z’;Z' 12.
If n, is large and negative
IRl 4 1
(4.2.7)
~ I,
b~ (1) B
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